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ABSTRACT

This paper presents a distributed algorithm to
detect deadlocks in  distributed data bases,
Features of this paper are (1) a formal model of
the problem is presented, (2) the correctness of
the algorithm is proved, i.e. we show that all
true deadlocks will be detected and dcadlocks will
not be reported falsely, (3) no assumptions are
made other than that messages are eceived
correctly and in order and (4) the algorithm is
simple.

1. INTRODUCTION

A great deal of effort has gone ‘into developing
a8 distributed algorithm for detecting resource
deadlocks in distributed data bases (DDBs)
[3,4,7). In a September 1980 paper Gligor and
Shattuck (4] state "Rencwed interest in
distributed systems has resuited in the
publication of at lcast ten protocols for deadlock
detection, However, few of these protocols are
correct and fewer appear to be practical," In
this paper we present a solution to this much-
studied problem.

The following paragraph briefly reviews the
literature on distributed deadiock detection, A
model of deadock and an algorit.m for deadlock
detection suitable for message passing systems
appears in {1j, The message model of deadock
assumes that a process which {is waiting to
communicate with other processes, cannot proceed
with it3 execution until {t communicates with any

'This work was supported in part by the
hir Force Office of Scientific Resecarch
under grant AFOSR 81-0205 and the Univer-
sity Rescarch Institute at The University
of Texas.

one of the processes it is waiting for. The DDB
model considered in ‘his paper and in (4,4,6,7)
assumes that a process can proceed only wnen {t
receives all resources that it is waiting for.
The any/all difference in these models results in
completely different alvorithas for deadlock
detection, Deadlock detection for a c¢luss of
communicating firite state machines is consi ‘ered
in [5). In thic paper we are concerncd with
dynamic detection of deadlocks rather than with
proving that spccific communicating sequential
machines do not deadlock, which i3 Lhe prchlem
considered in {5). We consider the general class
of problems appearing in [3,4,7). In particular,
the DDD model we use is derived from Menasce and
Muntz, cne of the first pape~s in this area. For
a complete review of the literaure see [4,6,8].

The organization of this paper 1s as follows.
Section 2 presents a si.ple formal model of a
distributed sestem; this model is called the basic
model. Section 3 describes an algorithm to cetect
deadlock in the tasic model and presents its
proof. Performaice issues are found in scctios 4.
A distributea algorithm by which a deadlocked
process can determine the identity of  otner
processes in the deadocked rnet is presented in
section 5. In section 6 we review the distributed
data base model presented by Menasce und Munt:z
[3), who were about the first to trcat the
problem. We then show how the basic model
algorithm can be extendecd to solve the LLB
problem,

2. THE BASIC MODEL

2.1. Goal of This Section

One of the diificulties with work in the area
of DDBs {8 1in descriting the model of a DDB
clearly and unambiguously. Since informal,
operational models often result in ambiguity we
have chosen to describe our model by axioms, Our
proofs of correctness use these axioms; they do
not recly on fnplicit assumptions about LDBs., The
basic model which is descrivbed in this section is
a simple, abstract model; its relevance to DDBs
may not be clear immedistely, but 1s discussed (n
detail in section 6, In the basic mcdel, the
state of computation is represented by a graph
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called a wait=for graph [3) in which the vertices
represent processcy which may send and recegve

messages., We use o walt-for yraph model because
much of the earlier work {3 based on wait-for
graphs., The graph also nelps to Jdistinpuish the
underlying DPB computation from the computation
associated with Jdeadlock detection.

The basic model s described by two sets of
sxioms: graph axioms and process axioms. uragh
axioms specify how the wait-for graph may chenge
over time, Graph axioms are concerned vxclusively
with the underlying [DB computation and not with
the computation associated with deadlock
detection. Process ar‘oms are concerned with the
relationship between the deadlock detection
computation and the underlying DDD computation.
Tie goal of this section is to present and
motivate the graph and process axioms, The model
is described and the graph axioms are motivated in
section 2,2, the graph axioms are presented in 2.3
and the problem of distributed deadlock detection
in the basic model is described in 2.4. The
problem description relies on the zraph axioms
alone. The process axioms (section 2.5) are the
rules which must be obeyed by any deadlock
detection algorithm, An explanation for the
process axioms is presented in section 2.6.

2.2. Model Description

A distributed system consists of a-finite set
of processes. A process is in ote of two states:
active or blocked., A process Py is blocked if it
is waiting for one or more processes to carry oul
some action (such as releasing resources needeu by
p‘). An active process is not waiting for any
other process. When p; needs p; to carry out some
<:tion it sends a request to p;; when p; carries
out the requested ¢-tion it sends a reply to pj.
Only active processes may carry out actions for
other processes, hence only active processes can
send replies. The state of execution of all
processes in a system is captured by a directed
graph G called the wait-for graph, There is a
one-to-one correspondence between vertices in G
and processes in the system, with vertex vi
corresponding to process Py Edge (vi.vj) exists
in G if and only if pj has sent a requést to pJ
and has not yet received a reply.

Edge Colours: The edges in G are coloured
grey, black or white, Edge (Vi'vj) is:

grey: if p; has sent a request to p
which Py has not recceived (yet).

black: if Py has received a request from
Py and has not sent the
corresponding reply to Py

white: if p; has sent a reply to p; which
Py hgs not received (yet),

We assume, for convenience, that there are
vertices in the wait-for graph corresponding to
terminated processes arnd to proresses that have
yet to be created. This allows us to ignore irhe

addition and delevion of vertices dn the waft-fur
griaph, 01 course, unborn e Lerpanotcd processes
cannubl carry cut actions for oller prucesses or
reguedt actions from other jprocesses,

We now describe the behawvior of o network of
processes in terms of  codouared praphs, We  uhe
process py and vertex vy, 1nterchianye bly,

€.3. Graph Axioms G1 - G4

[98 (Creatton;: A grey rdpe (VI'VJ)
may be crecated f  edge (vl.vJ)
does not exist.

G2: (Blackeniny): A grry cdge will
turn black after an arbitrary,
finite time.

G3: (Whitening): A black cd,e (Vl"j)
may turn white only if v, has no
outgoing edges. {unly” active
prrceessces may reply).

Gu: (Deletion):
disappear after an
finite time.

A white edge will
arbitrary,

We next define the deadlock detection problem
for the basic model and present the process axioms
which must be followed by a deadlock detection
algorithm.

2.4, The Deadlock Detection Problem in the Basic
Hodel

A dark cycle, {.,e. a cycle in which all edges
are grey or black (some may be grey and others
black), will persist forever because, it follows
from the graph axioms that edges in a dark cycle
cannot be whitened or deleted.

Pro Construct a distributed
algorithm by which a vertex vy can detect if it is
part of a dark cycle.

The algorithm by which v; determines 1f it is
part of a dark «cycle 1is called a probe
computation. In probe computations vertices send
messages, called probes, to one another; probes
are concerned with deadlock detection exclusively
and are distinct from requests and replies. We
now present axioms which describe how processes
communicate; these axioms show the relationship
between requests, replics and probes. We assume
that messages (i.e., requests, replies and probes)
are received in finite time in the order sent.

An  explanation of these axioms 1is given in
section 2.6,

oxia x. [ Avie,s Lot
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P1: If a probe is sent hy vy to v
when edge (vy,vy) 1 grey, cdge
(visvi) will turn black somelime
after” this probe {3 sent and
before {L 13 rcceived, If a probe
from vy i3 received by vy when
edge (v‘.vj) ts hlack theh cdpe
(vq{,v) existed and was dark (grey
or black) at all times from the
instant at which the probe wus
sent, to the instant the probe was

reccived.
p2: If a probe is sent by v to v
when (v;.v,) 1s white then (viw &

will disappear sometime after thls
probe is sent and before it is
received.

P3: A vertex Vi can determine
(locally) if there is an outgoing
edge (vi,vJ) to any v;, though it
cannot determine its colour
(locally). A vertex v can
determine (locally) if there is an
incoming black edge (vi.vj), from

any vy.

Pl Every probe will be received in
some arbitrary finite time after
it is sent.

2.6, E£xplanation of the Process Axioms

Pi: A probe sent by v; to vy when (v,.vJ) is
grey must have been sent after v; sent v, the
request which caused grey ede i i'vj) to be
created. Since messages are received in the order
sent, the request must be received by v; (causing
edge (vy,vy) to turn black) before the” probe is
received. Tre explanation for the second part of
Pt is similar.

P2: A probe sent by v, to v, when edge (v,,v )
is white must have been sSent after vj sent vy tge

reply which caused edge (Vi-'j) to change colour
from black to white. Since messages are received
in the order sent, the reply must be received by
vy (causing edge (v‘.vj) to disappear) before vy
receives the probe.

P3: An edge (v‘.v } can be created and deleted
by vy, and vy alone; ‘hence v; can determine if it
exists, An edge (v .vj) is %lack only if v, has
received a request from Vi and it has nct yet” sent
& corresponding reply. Hence vy is aware of black
edge (v‘.vJ).

Pi: Basic rule of message communication,

This completes the decscription of the basic
model. From now on, we will use only the axioms G)
- G4 and P! - PU to reason about the computation.
Therefore, we do not usc the terms "request,"
"reply," "resource," etc, hereafter.

3. AN ALGORITHM FOR THE BASIC MODEL

3.1. Goal of This Section

Tne goal of this section 13 to present a
solution to the problem, PROBT, presented in
section 2.4 construct a distributed algorithm
(i.e. a probe computation,) by which a vertex can
Jetect if tt {8 part of a dark cyele, In this
section we do not discuss the question of when a
vertex should initiate such a computation, ths
question is considered in section 4, Section 4,2
introduces probe computations. Secticn 3.3
presents the desired properticn of probe
computations while section 3.4 presents the probe
computation algorithm {itself. Coriectness proofs
are found in section 3.5,

3.2. Introduction to Probe Computatiuns

To determine whether it {s on a dark cycle, a
vertex vy initiates a computation called a prode
computation. Several vertices may initiate probe
computations and the 3ame vertex may initiate
several probe computations. To distinguish each
probe computation, the messajes and variables used
in the n-th computation initiated by vertcs i are
tagged (i,n), In the next paragraph we shall
discuss one probe computation, say the (i.nith.
In the interests of brevity we shall not tag
messages and variables in the following discussion
with (i,n); the tag should be understood
implicitly.

A vertex v, will send at most one probe to any
v, In one probe computation. Th2 probe is said to
be meaningful if and only if ecdge (v V) exists
and is black at the time that v, Feceives the
probe. From P3, Vi can determine if a probe is

meaningful,

3.3. Properties of a Probe Computation: QRP1,
QRp2

A probe computation is designed to have the
following two properties (proofs are in section

3.5):

QRP1: If the 1initiator of a prodbe
computation is on a dark cycle
when it initiates the probe
computation then the initiator
will eventually receive a
meaningful probe.

QRP2: If the (initiator of a probe

computation recceives a mecaningful
probe then it 13 on a black cycle
at the time at which it receives
the probe.
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3.4, Algorithm for a Probe Computation

Algorithm for the initiator, vy

AO: Send probes along all outpoing
edges,
AV Upon receiving the firsty

meaningful probe declare that "vy
is on a black cycle.”

Algorithm for a vertex vy other than the
initiator

A2: Upon receiving the first
meaningful probe send probes on
#al outgoing ecdges.

Note: Each step AO,AV,A2 of the algorithm,
once started must be completed before the process
can send or receive other messages. Therefore the
set of outgoing edges from process v; in step AC
(and process vy in step A2) do not cﬁange during
the step.

3.5. Proof of Correctness of a Probe Computation

Theorem 1 (Property QRP1)

If the initiator is on a dark cycle when it
initiates the probe computation then it will
eventually get a meaningful probe,

Proof: Let the initiator v;, be o= a dark (and
therefore permanent) cycle C. vy will send z probe
to its successor vertex v, in C (i.e. edge (vi.v )
is in C), and from P1 tgis probe is meaningfuf:
similarly v will sewd a meaningful probe to its
successor in C, and so on, and thus ecvery vertex
on C (including the inftiator) will eventually
receive a meaningful probe,

Theorem 2 (Property QRP2)

If the initiator receives a meaningful probe
then it is on a black cycle when this probe is
received,

‘Proof: The fnitiator i3 the only vertex which
can send a probe without having received a
meaningful probe (follows from step A2 of the
algorithm), Hence if the initiator v, receives a
meaningful probe, there exists a rintte sequence
v seeoV where (1) v = v = v, and
(5§°3 (k) ;gglived a meanin igi probg(?;om vjik_,
ot time t,, and t(k-1) < t(Kk), k = 1,..n=1, ch
e, denote the edge (v, ( _q)i¥ (y)). We will prove
tke following assertion fo# 11 k, 1<k<n by
fnductfon on k: at time t{(k) the edges

€1.85,...,8, are all black. The theorem then
follows by setting kzn in this assertion, For
k=1, the assertion follows from the definition of
meaningful probde, Now {inductively assume that

€4,Cny.. g, K<n, are all black at L(K); we will
prove that ey,es, 0,0, q are all black at t(Kel),
We first prove that Ko tXIOLS in the interval
{t(K), t(K+1)] and that tL {3 black at t(Kel).
From step A2 of the algorithm, “x existed at time
LK), From the definftion of wmeantnpful probe,
Cr,q Cxists and 13 black at a later tire U(Ket),
From P1, ¢y .y existed from the inatant t' that
Vi(K) sent  the probe Lo time t(Kel) ot which
v +1) recefved the probe. Note
teé§ Ct' < L(Kel), From the algorithm (see note
below algorithn) thig edee existed ot all times
from t(K) to t'., Hence ep,p exdsts at ull times
from t(K) to t(Kel), We now prove that vdges
€0.. .ty CXisted and were black in this interval.
This follows from the observation that §f ey
exists in the interval [t(K),t(Ke1)}, then e, _,
exists and remains black in this interval (from
induction hypothesis and G3), for k = 1,..,K.
This proves the assertion.

We have shown that & probe computation
satisfies the desired properties presented in
section 3.3. 1 the rext section we diicuss
issues rclated to performance,

4. PERFORMANCE ISSUES

¥.1. Goa) Of This Seciion

In section 3 we presented an algorithm (probe
compulation) oy which a vertex can determine if it
13 on a dark cycle. In this -~ection we will begin
by discussing the question of when a vertex should
initiate a probe computation (4.2). tie volume of
message traffic associated with probe computations
and methods for reducing the number of probe
computations are discussed in section 4.3.

4.2. When Should a Vertex Initiate a Probe
Computation?

It is sufficient for any one vertex on a dark

cycle to detect that it is deadlocked provided
this vertex later informs all other vertices on

the dark cycle tha% they arc deadlocked too. An
algorithm by which a deadlocked vertex informs
other vertices that they too are deadlocked is
presented in section 5. Therefore, in this
section we neecd only be concerned with an
initiation rule by which at least onc vertex in a

dark cycle will detect deadlock.

We employ the following initiation rule: A
vertex v, initiates a probe computation when any
outgoing edge (vi.v,) is added to the wait-for
graph. With this rule, 1f the addition of edge
lvi.v ) creates a dark cycle in the wait-for
graph, then vy will detect that it is on a dark
cycle, and hence deadlocked. Rules which yield
better performance are treated in the next
section.

-—
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Recall that to distinguish probe computations
initiated by different vertices, and by the same
vertex at different times we tag the n-th probe
computation initiated by vy with (i,n), i.c. all
probes and variables associated with Lthat
computation are tagged ({,n). If probe
computation (1,n) s initiated, a&}) probe
computations (3,k) with k<n may be ignored.
Therefore, every vertex need only keep track of
one, (the latest) probe computation initiatcd by
each vertex., Hence every process must keep track
of N probe computations where N is the numher of
vertices in the ¢-aph. For a given probe
computation, a vertex sends only one probe on an§
outgoing edge. Hence, there can be at most N
probes in a single probe computation.

The numter of probe computations initiated can
be reduced by having a vertex initiate a probe
computation only if an outgoing edge (v ,.v ) has
been in existence continuously for some time T,
where T is a performance parameter. If edxe
(v‘,v ) is deleted before T time units have
elapséd then v; has avoided initiating a probe
computation, fssues related to determining the
optimum value of T are found in {6]}. The basic
tradeoff is that if T is too smull too many probe
computations are initiated and if T is too large
the time taken to detect deadlock (which is at
least T) is too large.

-

5. PROPAGATING WAIT-FOR GRAPH INFORMATION TO
DEADLOCKED VERTICES

5.1. Goal of This Section

A distributed algorithm by which a vertex can
determine all permanent black paths leading from
it is -  -7ted in this section; the permanent
black pawns form the deadlocked portion of the
wait-for graph, and determining the edges and
vertices in the deadlocked portion of the graph is
useful in breaking deadlocks. The question of how
deadlocks should be broken is not treated here;
the reader is encouraged to read (3,6].

5.2. Computation to Determine the Wait-For Graph
(WEGD Computation)

Messages in a WFGD computation consist of sets
of edges. A message M sent to a vertex v, is a
set containing only edges on permanent black paths
{t,e. paths all of whose edges arc black and are
guaranteed to remain black) from v;. Each vertex
vy has a local variable S;, which is the set of
eages (that v, is aware gf) on permanent black
paths leading arom vy Inftially S, is empty, for
. #11  J. After the “initiator v;” of a probe
computation receives a meaningful probe, it
declares that it is on a black ecycle and
thereafter sends a message M = {(v,,v{)) to every
vertex v, il edge (v +¥4) is black. Since vy is
on a black ecycle (v,,v;) must be permanently
black. On  receivin a message M, vy sets

S’ = 5 M and thervialter sendy M where
MY = (evk.v Moos to c¢very vertex vy, where
(viovg) ds black, T1f 1t has not already sent the
Same message, N to Vi Since M only contains
cdpes on perranent, black paths leading from v,
M only containg edges on permanent black palﬁu
leading from vy . It 1s evident that every vertex
will determine all permanent black palhs leading
from it in finite time. A WFGD computation will
cease because a  vertex never sends the 2ame
message (set of edges) twice to another vertex.

6. THE DISTRIBUTED DATA BASE PROBLEM

6.1. Goal of This Section

We have presented and proved an algorithm for
the basic model. We now show how the -lgorithm for
the bhasic model can be extended to handle the
distributed duta base model considered in [3,4].
We first review the Menasce-Muntz DDB  model
(section 6.2) and point out the differences
between the DEB model and the basic model in
section 6.3. An abstraction of the 0DB model,
based on coloured graphs is found in section 6.4,
Probe computations for the DDB model are
introduced in s=cction 06.5. The algorithm to solve
the DB deadlock problem is presented in seclion
6.6, and a performance 1Ssue specific to LDBs is
discussed in section 6.7.

6.2. An Introduction to the DDB Deadlock Problem

A DDB is implemented by N computers S,,..,Sy.
There is a local operating system or cuutroller C,
at each computer S. to schedule processes, wianaye
resources and carry out communicationus. Tnere are
M transactions T,,..,T, running on the DLB. A
transaction s {mplemented by a collection of
processes with at most one process per conmputer.
Each process is labeled with a tuple (Tl.z ) where
Ty is the identity of the transaction that the
process belongs to and S, is the computer on which
Thé tuple (TI'SJ) uniquely

the process runs,
identifies a process,

A controller C, sends a message to a process
(T,.SJ) by putting the message in the process's
memory area and scheduling the process. A process
(T{,S4) sends a message to its controller C; by
putting the message in the controller's memory
area and then returning control to the cuntroller,
its own controller CJ. Controllers may rsend
messages to one another. Messages sent by any
controller C to any coutroller €, will be
received by 8m in finite time and in the order
sent by CJ.

At some stage in a transaction's computution it
may need to ™lock™ resources (such as files).
There are different kinds of locks (read locks ard
write locks for instance} but the details
regarding locks and locking protocols are not
relevant to the problem described here) Lhe reader

is referred to [3,6]. \When a process (Ty,59)
needs a resource it 3ends a request to its
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controller C,, If Cl manages the resource {t may
accede to the process’™s request inmediately or the
process nay have to wait to acquire the requested
resource, 'f the requested rescurce 13 mansy o4 Ly
some other controller Cﬂ. then €y transmits the
request on to process (T;,5,) via controller Cu;
the request is now made locally by process (Ty,5.)
to its own controller C . When (T;,3) acquires
the requested resource from €, it scnds a message
to (Ti.S)) (via €, and C)) stating that the
requested resource has been acquired. (T1~si) may
now proceed with its computation. When processes
in a transaction T; no longer neced a resource
manag~d by controller Cm. they communicate with
process (T;,5,) who 1is responsible for relecasing
the resource to Cp,.

A process cannot proceed with its computation
unless it acquircs every vresource that it
' requests, Thus a process is blocked permanently
from proceeding with computation if it never
acquires a requested resource. We assume that if
a single transaction runs by itself in the DDB it
will terainate 4in finite time and eventually
release all resources. When two or more
transactions run in parallel, deadock may arise
because each transaction may he blocked needing
resources held by other transactions. The problem
is to construct an algorithm to detect deadlock.

6.3. Dificrence Between the DDB and Basic Model

In the basic model, one process directly
requests another Lo carry out some action. 1In thé
DDB mudel, a process may not be aware of other
processes; furthermore, a process, only
communicates directly with {ts controller. Hence,
the primary difference between the basic model and
the DDB model is that in the bat:c model a process
determines locally which processes to (request
actions from and) wait for, whercas in the DDB
model the controlle~ ut each computer determines
the process waiting vehavior at that cumputer.

6.4, A Graph Mode) of DDB Deadlock

As in the basic model there is a one-to-one
correspondence between processes in the system and
vertices in the wait-for graph G. There is an edge
in G from a process (T;{,S4) to another process
(Tk.s ) at the same computef S;, if controller Cj
has & request from (T,,S,) for” resources held by
(Tk.Sg). Such an edge in G (which i3 incident on
vertifes corresponding to processes at a single
controller) is called an intra-controller edge.
There is an edge in G from a process (Ti.S ) to
another process (Ti.sm) within the same
transaction T; (but at a different computer) if
(T‘.SJ) is waiting for a message that it has
acquired a resource managed by C,: such an edge is
called an inter-controller edge.

The colour of an ({nter-controller edge from
(T‘.S ) to (T‘.Sm) is grey, black or white, where
the cdlours have the same meaning as in the basic
model, f.e, it is grey, if (Tt.s ) has requested a
resource managed by Cm and Cr ha’ not received the

request yet: it turns black when C, receives the

request  and white when € pives the requested
resource to (Ti’sn) (al wnich point 1t sends a
mesgage to l'!'l,.‘ls saying that the resource has
been acquired), “Uince the existence of an intra-
rontroller odge  ((T .5 ),(Tk,s )3 depends only
apon controller € }s awareness  that (Tl':‘)
requires a resource %v]d by (Tk,SJ), ubd since ¢
achedules (T,,5.) and (TV,S ) we ‘may assume Lhae
all tntra-controller cdguﬁ are black, The formal
graph model is described by the followiny axioms,

Graph Axfoms G1-G6 + .~ 2 DD

Axioms regarding intra-controller edges

G1: A black intra-controller edge
((T,.84),(T,.,5:)) may be added to
199 ¥
G if none exists,

G2: A black intra-controller edge

(T, .8) (T .Sj)) may be deleted
if kasj) has no outpoing edges.

Axioms regarding inter-controller  edges

{analogous Lo the basic medel)

G3: A grey inter-controller edge
«T,, )’(Ti'sm)) mey be added to
G 1f the edge does not exist.

C4: A grey Inter~controller edge will
turn black in an arbitrary, finite
time.

G5: A black inter-controller edge

(T ,8,).(T;,5,)) can turn white
ir Ti'sm’ has no outgoing edges.

G6: A white inter-controller cdge will
disappear in arbitrary, Cfinite
time,

A dark cyecle in G will persist forcver. The
problem is to construct a distributed algorithm by
which a controller C, can determine if one of its
processes (Ty,5y) 3 on a darr cycle, The
algorithm must ~ satisfy the following process
axioms which are analogous to the process axioms
for the basic model.

P1: If a probe is sent by C, to C  when edge
((Ti.s ), (T .Sm)) {5 grey, then c%c edge will turn
black gome ime after the probe i3 sent and before
it is received. If a probe from C, {3 received by

Cm when the edge is black then the edge existed

and was dark from the instaut that the probe was
sent to the instant that the probe was received.

P2: If a probe is sent by C, to CJ when edge
((T‘.SJ).(Tx.Sm)) 1s white, then the” edge will

disappear some time after this probe is sent and
before it is recetived,
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P3: A controller C, can determtne locally tf
there 1s an outgoing edge f{rom any of {ts
proceases (Tl.S ) to any other prucess; however,
it cannot detei%ine locally the colour of {nter-
controller edges outgoing from (T‘.S}). A
controller Cm can determine locally Lf thére in an
incoming bLlack edge to any of ({ts processes
(T‘.S.).

P8: A probe sent along any edge is received
correctly and within finite time.

6.5. The Probe Computation in the NDB Model

A probe computation in a DDB model is exactly
the same as in the basic model except that instead
of processes, rontrollers send probes to one
another, Instead of having a process (Ti.S ) send
a probe to another process (T .SJ) at the same
computer S;, controller C, mergly labels (T,.S,)
as having 3coeived a meaningful probe. As in the
basic model, the n-th probe computation initiated
by controller C, is tagged (j,n), i.e. all labels
and probes are” tagged (j.n), If there is an
outgoing inter-controllers edge ((Ti's ).(Tl.sm))
from a labeled process {Tl;S ), then é sends a
probe to Cn. This probe cargiea with f{ the tag
(j,n) as 'well as the identity of the edge
((TS’ S ).(T.,Sm)); this probe is said to be sent
along edge t(Ti.S )'(Ti'sm))' This probe, from
controller C. to ahother controller Cm' is said to
be meaningfuf if the edge ((Ti,s )'(Ti'sm)) exists
and is black at the time at which C, receives the
probe, We now describe a single probe
computation, say the (j,n)th, Though the tag
(j,n) does not appear explicitly im the
description, it should be assumed.

6.6. Algorithm for a Probe Computation

Algorithm initiated by C; to determine if
process (T,,S,) is on a dark cycle

AO: Label all processes (Tk'sj)
reachable from process (Ti.S )
along intra-controller edges, f
(Ti.Sj) is labelled, then declare
that it is on a black cycle of
intra-controller edges.
Otherwise, {f there is an inter-
controller edge from a labelled
process (T.,,S;) to any process
(To+Sp) then Send a probe to Cyp
along edge ((Ta.SJ).(Ta.Sb)).

AV Upon receiving a meaningful probe
along any inter-controller edge
((Tp.s ).(Tp.s )), labei (T_,S,)
and ai‘ proceSses recachable from
(T .SJ) along intra~controller
edBes]  1r (T, is 1abelled,
declare that (T‘.SJ) i3 on a black
eycle,

Alporithm for a_tontroller €. Other Than Lhe
Inttiator

A2: Upon receiving a meaninpful probe
along an inter-controller edye
directed towards a process (T ,5.)
label (T,,5) and all processes
reachable rom (T .Sm) along
intra-controller edges. If there
is an inter-controller edyc from a
labelled process (Tu.Sn) to any
process (Ta.sb) then send a probe
to C, along edge UT,.5,) (T, 51D
if such a probe has not afready
been sent,

Note: Fach step AO0,A1,A2 of the algorithm,
once started, must be completed before the
controller can send or receive other m¢ssages.
Hence the {ntra-controller edges and outgoing
inter-controller edges from processes in 5, cannot
charge during steps A0 and A1, The a%alogous
condition holds far Sm in ster A2,

The proof of the algorithm for the DDB model is
exactly the same as for the basic model. The
performance issues discussed for the basic model
also apply to the DDB model. However, there is
one performance issve which arises in the DDB
model which does not arise in the basic model.
The algorithm presented above requires a
controller C to initiate a separate probe
computation for each of its constituent processes

(T{.S5). We now show how the number of probe
comput ations can be reduceu.

6.7. How to Avoid Initiating a Separate Probe
Computation for Each Process

When a controller C, wishes to determine if any
of 1ts constituent progesses are on dark cycles it
first determines if there {s a cycle along intra-
controller =2»dges alone, If there is no intra-
controller cycle, then any cycle through any
constituent process (T;,S;) must include an inter-
controller edge direct- toWwards a constituent
process ZTk.SJ). Hence, {t is sufficient for a
controller to 'initiate separate probe computations
for processes with fincoming (black) inter-
controller edges. Hence, when a controller wishes
to determine {f any of its processes are
deadlocked it initiates Q separate probe
computations where Q is the number of constituent
processes with incoming, black, inter-controller
edges.

T. SUMMARY

We have presented a solution to the much-
studied problem of deadlock detection in
distributed data base systems, A formal model
based on coloured graphs was used., For purposes
of exposition, the problem was introduced 1n two
stages: in the frirst stage, a simple mnodel,
called the basic model was introduced and in the
second stage the Mcnasre~Muntz distribul.cu data
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base model was discussed. Our algorithm was
proved correct. Details reguarding the different
nodes of resource ltocking und other features of
distributed data bases hiave not been included
here. The reader is referred Lo (3,6).

A great deal of work remains to be done on
evaluating the performance of the algorithm and on
developing algorithms for different types of
distributed systems,

8. ACKNOWLEDGEMENT

Our work in this general area resulted from
reading a seminal paper by Dijkstra and Scholten
on termination detection [2) and by later
discussions with them. Virgil Gligor showed us
that the DDB problem, though apparently simple,
was non-trivial and interesting, and led us to the
sizable body of work on the subject.

9. REFERENCES

1. Chandy, K. M., J. Misra and L, Haas, "A
Distributed Deaulock Detection
Algoritnm and Its Correctness Proof,"
submitted to the Communications of the
ACM.

Di jkstra, E. W. D, and C. S. Scholten,
nTermination Detection for Diffusing
Computations," Information Processing
Letters, 11, 1, August 1980, pp t-4,

2

3. Menasce, Daniel and Richard Muntz,
#Locking and Deadlock Detection in
Distributed Data Bases," IEEE
Transactions on Software Enginecering,
Vol., SE-§5, No. 3., Hay 1979.

4, Gligor, Virgil and Susan H. Shattuck,
nOn Deadlock Detection in Distributed
Systems,” IELE Transactions on Software
Engineering, Vol. SE-6, No. 5,
September 1980,

5. Yu, Yao-Tin and Mohamed Gouda,
"Deadlock Detection for a Class of
Communicating Finite State Machines,"
TR~193, Computer Scicnces Depatment,
University of Texas, Austin, Texas
78712,

6, Gray, J. N., *"Notes on Data Base
Operating Systems " in Operating
Systems and  Advanced Course, Berlin,
Heidelberg: Springer-Verlag, 1978, Ch.
3.F, pp. 394-481.

7. Obermarck, Ron, "Global Deadlock
Detection Algorithm,” RJ2BUS, B4
Research Laboratory, San Jose,

California 95193, June 1980.

8. Mohun, C., "Distributed  bata  Base
Hanagement - Progress, Problems, Scne
Proposals and Future Pirections »
Computer Sciences Department, Working
Paper  WP-1802, University of Trxas,
Austin, Texas 16712, May 1979,

-




